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EXPERIMENTAL AERODYNAMIC CHARACTERISTICS OF
10 SHORT AXTISYMMETRIC BODIES AT
MACH NUMBERS OF 5 TO 15

By Gary T. Chapman, James E. Terry,
and Scott Bruin
Ames Research Center

SUMMARY

2433873

The aerodynamic characteristics of three families of short axisymmetric
bodies, 10 nose shapes in all, followed by a nominal one-diameter-long
cylindrical afterbody are studied. The three geometric families were sharp
cones, blunted cones, and ellipsoids. Variations within each family yielded
four wave drag coefficients. Experimental values of drag coefficient, 1lift-
curve slope, dynamic-stability parameter, and center of pressure are presented
and compared with results from two simple theories.

The short cylindrical afterbody contributed significantly to the 1ift,
and also produced a rearward movement of the center of pressure; this was
particularly evident with the sharp-nosed-cone configurations. The aerody-
namic characteristics appear to be a stronger function of nose drag coeffil-
cient than of nose geometry per se. The aerodynamic characteristics were, in
general, insensitive to Mach number with the exception of the dynamic-
stability parameter; low Mach number results indicated dynamic stability while
high Mach number results indicated dynamic instability.

In general, modified Newtonian theory underpredicts the drag by 5 to 30
percent; furthermore, it predicts little or no contribution to 1lift from the
afterbody at small angles of attack. A simple hybrid theory which allowed
for a contribution to 1lift from the afterbody showed much improvement on many
of the configurations but greatly overpredicted the 1lift on the cconfigurations
with ellipsoidal noses. It is felt that a better estimate of the zero angle-
of -attack pressure distributions would improve estimates made with the simple

hybrid theory.
fruTHo
INTRODUCTION A

In the design of a hypersonic vehicle for a particular mission many
design compromises, or - as they are often called - trade-offs, are made.
Many of these compromises affect the geometry and thus the aerodynamic charac-
teristics of the vehicle. To determine these trade-offs in the aerodynamic
characteristics the designer must rely heavily upon simple theoretical
results, many of which are unproven, or on expensive machine computations,



since only a relatively small amount of experimental data may be available.
Furthermore, the numerical solutions are for the most part limited to small
or zero angle of attack and nondissipative flow.

A recent series of free-flight experiments, designed for the purpose of
obtaining shock-wave shapes, gave a body of aerodynamic data for 10 short
axisymmetric bodies with systematic variation of three basic parameters - Mach
number, nose drag coefficient, and nose geometry. These data provide an
opportunity to examine experimentally the effect of these three basic param-
eters on the aerodynamic characteristics. The shock-wave characteristics and
flow fields for these same bodies were presented in references 1 and 2.

The purpose of the present report is twofold: First, to present the
experimental aerodynamic characteristics of this family of 10 configurations;
second, to assess the applicability of two or three simple theories by com-
parison with these data.

SYMBOLS
A cross-sectional area
a1, « .., 8g constants used in equations (6)
Cp drag coefficient, ~2tak drag

(l/2)pV2A

CDeff effective drag coefficient defined by equation (3)
Cp drag coefficient at zero angle of attack
(o]
Cr, ,Cy trim-1ift and trim-side-force coefficients
o’ 1o
CLQ lift-curve slope, gl [——iiiz———], per rad
% L(1/2)pV"A
Cn pitching-moment coefficient, pitching moment
(1/2)pV2A
Cm. + C damping-in-pitch derivatives 0 (Cp) + 0 (Cm)
mg mg, ’ 3q M o
Crng, pitching-moment-curve slope, g% (Cp), per rad
CNOL normal -force-curve slope, g% [normal force]’ per rad
(1/2)pv=A
d cylinder diameter




constant in equation (1)

mass moment of inertia about roll and pitch axis, respectively

ballisti rameter pA
istic parameter, 5—

length of cylindrical afterbody

length of nose section

free-stream Mach nunber

model mass

static pressure

roll rate

dimensionless pitching velocity with respect to wind-tunnel center
line

free-stream Reynolds number, LA

nose radius

time

free-stream velocity

distance from model nose along axis of model

distance from model nose cylinder intersection to center of gravity
distance from model nose cylinder intersection to center of pressure
coordinates along and orthogonal to the tunnel

dimensionless pitching velocity relative to velocity vector

angles of attack and sideslip, respectively

resultant angle of attack, tan'lN/;ane o + tan® B
root-mean-square resultant angle of attack

dummy variable

constants in equations (6)

cone angle



A wave length of pitching oscillations

u  coefficient of viscosity of free-stream air

¢ dynamic-stability parameter (defined by eq. (8))
p free-stream air density

o radius of gyration

Subscript

i initial conditions
TEST PROCEDURE

Small-scale models were gun launched at high speeds through a counter-
current supersonic flow or still air, and the position and angular orientation
of the models were measured as a function of time. The aerodynamic character-
istics of the models were determined from these data.

Models and Sabots

The models were cylinders nominally one-diameter-long with various nose
geometries. The nose configurations were selected to cover a systematic vari-
ation of geometry and nose drag. The families tested - sharp cones, spheri-
cally blunted cones, and ellipsoids - are shown in figure 1. Within each
family, noses were designed to have four nominal drag coefficients, 0.5, 0.9,
1.3, and 1.8, which were estimated from modified Newtonian theory
(Cp = Cpmax sin® 0) and reference 3. The flat-faced cylinder was common to

all three geometries, so there was a total of 10 different configurations. A
photograph of the complete series is shown in figure 2.

The small flange at the base of each model (see fig. 2) supported a thin
sheet of plastic, which prevented the remainder of the model from rubbing the
gun bore. In general, this flange was about as thick as the boundary layer
and, in many cases, was partially worn off from barrel friction. The wear was
not always symmetric, as evidenced by the shock wave in the region of the
flange. The flange is thought to have only slight effects on the aerodynamic
characteristics.

Test Facilities and Flow Conditions
The tests were conducted in the Ames supersonic free-flight wind tunnel.

Only a brief description of this facility will be given since a detailed
description is given in reference 4.
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The supersonic free-flight wind tunnel is an unheated blowdown supersonic
wind tunnel with interchangeable nozzles giving free-stream Mach numbers of
2 or 3. The tunnel has a 27-foot-long test section through which gun-launched
models are fired. There are nine observation stations at 3-foot intervals
along the test section and each station is equipped with a pair of orthogonal
spark shadowgraph systems for obtaining model position and orientation. The
time between successive spark shadowgraphs is recorded to give the time his-
tory of the flight. Tests can be conducted either in the countercurrent air
stream or through still air.

Various model velocities were used in combination with countercurrent
air-stream Mach numbers of O and 3 to obtain nominal test Mach numbers of 5,
10, and 15. Tests without flow (M = 5) were conducted at 1 atm pressure to
give a nominal free-stream Reynolds number of 1.6 million based on model diam-
eter. The free-stream static pressure of the shots with countercurrent air
stream {countercurrent air stream had a Mach number of 3) was adjusted to give
the same nominal Reynolds number of 1.6 million at Mach number 10. However,
the minimum pressure at which the wind tunnel could be operated yielded a
test Reynolds number of 2.5 million for the tests at Mach number 15. Under
these conditions, the flow over the models at M = 5 and 10 can be considered
as a perfect gas; however, at M = 15 some oxygen dissociation will occur in
stagnation regions. The test conditions for each shot are given in table I.

DATA REDUCTION

The measured position (x,y,z), angular orientation (a,B), and time (t)
date were analyzed by means of the equations of linear and angular momentum to
yield the various aerodynamic characteristics. ©Some typical measurements
giving the linear motion in three dimensions and the angular in two dimen-
sions, for a single test, are shown in figure 3. The method of analyzing such
data and the variocus assumptions employed will be described in the following
paragraphs.

Drag

For a drag coefficient of the form
Cp = Cp. + Goy2 (1)
o

where Cp, 1s the zero angle drag coefficient, G is a constant normally
taken to be the lift-curve slope, and a, 1is the resultant angle of attack,
reference 5 shows

L d(;;v) (2)

C
Deff



where k =g A/em, a(1nv) )/d(x) is the slope of the plot of 1n(V) versus x
(because of “the small change in V, thls is nearly the same as the slope of a
plot of V versus x (see fig. 3(a) , and CDeff 1s given by

_ 2
CDeff = CDO + Canrms (3)

where

1 X
2 _ L 2
Crms ~ x/; % at

From equations (1) and (3) it can be seen that Cpepe I8 that value of Cp

which occurs at a resultant angle of attack equal to the root-mean-square
resultant angle of attack.

Lift-Curve Slope

To determine CLq, the swerve (i.e., varying translation in the direc-

tions y and z, a typical example is shown in fig. 3(b)) was analyzed by means
of the linear-momentum equations (ref. 6). The motion in the two directions
can be combined as a complex number and written as

Syt izt = gr_ﬁ l:CLOL(B +oia) + <-ch + iCLO> eipr (4)

where the double prime means differentiation twice with respect to x; CY and
o
CLO are the trim-side-force and trim-lift coefficients, respectively. Equa-

tion (4), integrated twice, yields

-y + iz = (-y + 1z)4 + (y' + iz')5x + e= [ J[ Jf (p + ia)dt at

. ipx
+ <_cYO + iCLO> <l + 1p§2- e )} (5)

where the subscript 1 refers to initial conditions. This derivation is
based on the following assumptions: (1) The velocity is constant over the
length of the flight; (2) CYO, CLO, and CLm are constant; (3) lift due to

angular rates is ignored; (4) the angles o and B are small and are deter-
mined from equations for the oscillatory motion (eqs. (6a) and (6b) of next
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section) which were fitted to the experimental values of o and B. This last
point will be discussed in more detail in the following section. To deduce
the constants CYO, CLo’ and CLQ: a differential correction procedure was used

to fit equation (5) to the experimental position data by the method of least
squares.

Stability

The static- and dynamic-stability characteristics were determined by the
tricyelic method of Nicolaides (ref. 6). This approach allows for constant
spin and small amounts of trim. The basic assumptions are: near-perfect
axial symmetry of the models, small angular displacements, linear pitching and
yawing moments, and a dynamic-stability parameter that is independent of angle
of attack. Under these assumptions the solutions to the angular momentum equa-
tions in pitch and yaw are

x x
a = enl (a; sin wix + as cos wix) + en2 (a3 sin wsx + a, cos wax)
+ (as sin px + ag cos px) (6a)

n.* . n.x .
B =e (a; cos wix - as sin wix) - e 2 (ag cos wsX - a, sin wox)

+ (as cos px - ag sin px) (6b)

To obtain the constants w;, w2, 7, Nys 81, 82, 8z, 84, 2s, and ag (p is

related to w; and ws), a differential correction procedure was used to fit
equations (6a) and (6b) to the experimental data (e.g., fig. 3(c)) by the
method of least squares.

The slope of the pitching-moment curve, Cp,, 1s related to the wave
length of the pitching oscillation, A, by

2
) Br Iy
NEpAd

(7)

-Cma

where A 1is obtained from the constants w; and wp in equations (6a) and

(6b) as

N = 2r (8)

N (B>

Similarly, the dynamic-stability parameter ¢ 1s related to the
constants n, and 1, of equations (6a) and (6b) by



£ = E—Xl (ny + ny) (9)

where ¢t 1s defined as

¢ =Cp - Cr, + (Cpy + Cmg) (8/0)? (10)

This parameter is often referred to as the constant altitude dynamic-stability
parameter for unpowered flight and is discussed in more detail in reference 7.
Under the assumptions governing equations (6) the values of Crmg, and &

obtained from this technique are constants representing a linear dynamic sys-
tem. Nonlinearities that may exist in the characteristics of the models being
tested are thus represented by values of Cmaland ¢ which define an
"equivalent linear system."

Center of Pressure

The center of pressure, ch, may be determined from the definition of the
pitching-moment-curve slope:

O, = <T " 1) e (11)

This equation, when solved for ch/d, gives

e c8 . (12)

where for small angles of attack the slope of the normal-force curve, CN@f is
given by

CNOL = CD + CLOL (13)

Brror Analysis

The estimated accuracies of the basic measurements are

X, ¥, 2 *0.005 in.
t +1.25 psec
a, B +0,2°
The accuracy of inferred aerodynamic parameters is very difficult to

determine. However, experience and repeatability indicate that Cp and Cyg
are very good (less than 5-percent error). The accuracy of CLa? which
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depends on many factors,such as ap, CL@: pA/2m and the distance flown, is

generally not as good. The repeatability of the present results indicates an
accuracy of *0.15 per radian; there are a couple of cases with larger scatter.
Although the accuracy of the dynamic-stability parameter € 1is generally not
very good, it does determine convergence or divergence and indicates strong
trends. The accuracy of the center of pressure which is derived from Cp,
Cma’ and CLOL lies between the accuracy of CmaJand Clige

RESULTS AND DISCUSSION

The aercdynamic characteristics Cp, CLaﬁ Cmgy &, and Xep, experimentally

determined for the family of 10 configurations at nominal Mach numbers of 5,
10, and 15, are basically for small angles of attack, but some exceptions will
be noted. The experimental results along with the flight conditions are
listed in table I. A discussion of these results, as well as comparisons with
simple theories, where applicable, follows.

Drag and Lift-Curve Slope

Drag.- The drag coefficients at zero angle of attack, CDO, plotted in
figure 4 is the measured drag coefficient, CDeff’ corrected for drag due to

1ift. This correction was made using equation (3) with measured values of
CLa and yppg. In most cases the correction was small. The effect of Mach

number on the drag coefficient is small in the range tested. Comparison with
modified Newtonian theory is made with results from all configurations tested
and comparisons with reference 3 are made for the two sharp-cone models with
attached bow waves. The drag coefficient for the two sharp-cone models with
higher drag could not be determined from reference 3 because their shock waves
are detached.

Good agreement was obtained between the test results and the drag
coefficients calculated by the method of reference 3 for the two cones with
the lowest drag. Including skin friction and base drag would probably improve
the agreement., In general, modified Newtonian theory consistently predicts
low drag coefficients, varying from 5 to 30 percent. The major exception to
this is the drag coefficient of the flat-faced configuration which was over-
predicted because the modified Newtonian theory failed to account for pressure
decreasing to the sonic condition at the corner.

Lift-curve slope.- The experimental lift-curve slope results are plotted
in figure 5 as a function of free-stream Mach number. The scatter in these
data is larger than in the drag data, as was discussed in the error analysis
section. However, because of their internal consistency, the present results
are considered to be good. The lift-curve slope appears to be constant or to
decrease slightly with Mach number, but the scatter makes it difficult to say
which of these is correct.




Comparison with medified Newtonian theory shows poor agreement. This is
not too surprising when one considers that this theory accounts for no contri-
bution to the 1ift curve on the cylindrical afterbody at zero angle of attack.
Note the curve for the flat-faced body is not shown; it is Crp, = -1.8 and
would fall well below the data,

A comparison is also made with a simple hybrid theory which includes a
contribution to lift, at small angles of attack, from the afterbody. This
hybrid theory uses modified Newtonian or reference 3 calculations on the nose
and a local perturbation theory (ref. 8) on the afterbody, The local pertur-
bation theory is basically as follows: Given a zero angle-of-attack pressure
distribution, expand the flow locally on the leeward meridian and isentropi-
cally compress the flow locally on the windward meridian through a Prandtl-
Meyer angle equal to the angle of attack; assume that the pressure
perturbation is distributed in a cosine variation around the body; finally,
integrate the perturbed flow field to obtain the 1ift. The pressure distri-
butions at zero angle of attack used in the present calculations are tabulated
below:

Hybrid Theory

Configuration Theory used Zero angle-of-attack pressure
on nose distribution used on cylinder

C-0.5 Ref. 3 Constant P/P_

C-0.9 Ref. 3 Constant P/P_

C-1.3 Med, Newtonian Constant P/P,,
SC-0.5 SP - Correlation equation (1L4)
SC-0.9 SP - Correlation equation (14)
SC-1.3 SP - Correlation equation (14)
E-0.5 Correlation equation (14)
E-0.9 Correlation equation (1k4)
E-1.3 Correlation equation (1L)

The pressure on the forebodies was determined from reference 3, when possible,
and by modified Newtonian, otherwise. The pressure just downstream of the
shoulder (to be indicated by SP) on models with sharp corners was obtained
using a Prandtl-Meyer equation around the corners, The pressure on the cyl-
inder of the sharp-nosed cones was assumed to be constant and equal to the
shoulder pressure, SP (this assumption of constant pressure is a simple
approximation which should be fairly good for the short cylinders), For the
blunted cones, a modified blast-wave-type pressure-ratio correlation equation
(eq. (1L4)) was faired into the pressure just downstream of the shoulder (indi-
cated in the tabulation by SP - correlation eq. (14)). For the ellipsoidal
configurations, the following modified blast-wave-type correlation equation
was used (indicated in the tabulation as correlation eq, (1k4)):

2q 1/2 0.7
P w0 D

5~ = 0.024 <?£;;ﬁ§——{> (1%)
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This equation was obtained by faliring a curve through the correlated results
of reference 2, with only the data for positions near the nose considered,

The equation obvained is most representative of the Mach number 10 data, being
too high at the .ower Mach number and too low at the higher Mach number,

The comparison with the simple hybrid theory is shown in figure 5.
Although there is some improvement over modified Newtonian theory, there is
still much to be desired, particularly for the cases with ellipsoidal noses,
For those cases which used equation (1k4) as all or part of the zerc angle-of-
attack pressure distribution the simple hybrid theory appears to overestimate
the Mach number effect as a result of the pressure-correlation curve being too
high at the low Mach numbers and too low at the high Mach numbers, as
described earlier,

It should be noted that the accuracy of this simple hybrid theory, among
other things, is a strong function of the pressure distribution used., There-
fore the order of approximation of the pressure distribution is important,

The pressure distribution in the first diameter or two behind the nose is very
sensitive to nose geometry and Mach number., More accurate pressure distribu-
tions would, it is believed, improve the agreement, bringing it more in line
with the trend exhibited by the experimental results because, as was noted
above, the correlation curve used tends to overpredict the pressures at Mach
nurber 5 and underpredict the pressures at Mach number 15,

Correlation of lift-curve slope and drag,- The experimental lift-curve
slope is plotted versus the drag coefficient in figure 6 for a nominal Mach
nunmber of 10, There are three apparent advantages to this type of plot:

(1) a quick comparison of various geometries can be easily made; (2) a quick
over-all assessment of theory can be made; and (3) a simple approximate trade-
off between 1lift and drag is easily obtained,

In comparing the experimental data for the various geometries, at a
constant CDO, we can see that, in general, the configurations with a dis-

continuous slope at the nose-cylinder junction have more 1ift than the ellip-
tical nose configuration, DNote, however, that at the high drag coefficient
end of the curves all of the curves have to meet at a common point (i.e., the
flat-faced cylinder is common to all the families). As CDO is increased

from its lower values the lift contribution from the afterbody of the sharp-
nosed configuration at first appears to increase, This can be seen from a
comparison of the theory for the cone alone (considered to be a good repre-
sentation of cone data) and the cone-cylinder data, However, with the change
in the surface flow ahead of the shoulder from supersonic to subsonic, the
1ift from the afterbody decreases with further increase in Cp, This change
of afterbody lift with changing Cp appears to be present in the blunt-cone
data also., The changes in 1ift produced by the afterbody would appear to
correlate with the pressure just downstream of the shoulder, particularly for
the sharp cone,

Three theoretical approaches h

ave heen used to generate curves for com-
parison with the experimental results:

s the modified Newtonian and hybrid

11
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theories for the complete configuration, and reference 3 for conical noses
alone, It is interesting to note the modified Newtonian does not distinguish
between configurations having the same drag. Furthermore, note that, in gen-
eral, the simple hybrid theory which has a contribution to the lift-curve
slope from the afterbody does provide significant improvement over the modi-
fied Newtonian theory and reference 3 for both sharp- and blunt-nosed configu-
rations. Note the curve for the sharp-nosed cones 1s terminated at a Cp of
about 1,2 since a theoretical calculation of Cp, based on reference 3, for
the 58° cone is not possible because of shock detachment, The improved agree-
ment with experimental data obtained with the simple hybrid theory over that
which considers contributions from the nose only indicates the significant
contribution of 1ift from the short cylinder, A short-curve second-order
shock-expansion theory for slender bodies (ref. 9) is also shown in figure 6
for comparison with the simple hybrid theory on the cone-cylinder configura-
tions, The two theories appear to give consistent results for the small angle
cones,

The agreement between the configurations with the ellipsoidal noses and
the simple hybrid theory is poor. This may be because of poor estimates of

the zero angle-of-attack pressure distribution,

The trade-off between lift and drag is readily apparent in figure 6. A
simple rule of thumb for this trade-off is

ACL@ = =2 ACDO

where the ACLOL is the incremental change in lift-curve slope accompanying an

incremental change ACDO in drag,

Static Stability and Center of Pressure

Static stability.- The experimentally determined values of the static
stability Cma, are tabulated in table I, It is not meaningful to make direct

comparison of these data because the centers of gravity are different for
different models, It should be noted, however, that there is a slight Mach
number effect on Cmy. Increasing Mach number decreases Cmg. A better com-
parison of the different configurations can be made on the basis of the
center-of-pressure locations obtained from Cpy, CLQ) and Cp.

Center of pressure,- The center of pressure in diameters from the
shoulder is shown plotted in figure 7 as a function of Mach number, With the
exception of one or two data points, the results are internally very consist-
ent. Also shown in this figure are the centers of pressure calculated by
modified Newtonian theory and the simple hybrid theory.

The center-of-pressure position is nearly independent of Mach number,
moving only slightly forward with increasing Mach number, and is highly
dependent on the nose-drag coefficient, moving farther behind the shoulder

12




with increasing nose drag, The geometry of the nose has only a slight effect
on the center-of-pressure location for configurations with the discontinuous
slope at the shoulder (i.e., the sharp- and blunt-nosed cone configurations).
This again appears to indicate the strong effect of the slope discontinuity on
the afterbody pressure distribution., On the other hand, the ellipsoidal -nosed
configurations with Cp = 0.5 and 0,9 had a pronounced effect on the center

of pressure, moving it forward.

In comparing the data with the theoretical results one can see a marked
improvement in the simple hybrid theory over the modified Newtonian theory,
again indicating the important contribution of the afterbody., The agreement
with the simple hybrid theory is, in general, very good.

Dynamic Stability

The present set of tests was not specifically designed for obtaining
dynamic-stability data. As a result, in many of the tests the number of
cycles of pitching and yawing motion observed was insufficient for obtaining
accurate dynamic-stability data. Dynamic-stability data were obtained, how-
ever, in the course of analysis of the flights and are tabulated in table I,
along with the number of observed cycles of motion and a notation characteriz-
ing the oscillatory motion as planar (P) or nonplanar (NP). (Whether the
motion is planar or not has an effect on the apparent dynamic stability
(ref., 10)., This peculiarity can result from nonlinear damping.)

Bearing in mind the above limitations, we plot the dynamic-stability
parameter, £, for those tests with one or more cycles of observed planar
motion (fig. 8). Note that one cycle of observed motion is by no means suffi-
cient for good precision. The results do, however, indicate a couple of
points: First, in general, there does not appear to be any dominant effect of
nose geometry or drag coefficient; and second, there appears to be a decrease
in dynamic stability with increasing Mach numnber, the low Mach number results
indicating dynamic stability and the higher Mach nunber results, dynamic
instability.

CONCLUDING REMARKS

The aerodynamic characteristics of three families of bodies, 10 configu-
rations in all, at nominal Mach numbers of 5, 10, and 15, have been experi-
mentally determined and compared with some simple theories, The following are
some general observations about the results and the comparison with theory.

The short afterbody was found to contribute significantly to the 1ift and

also to produce a rearward movement of the center of pressure; this was par-
ticularly evident for the sharp-nosed cone configuration.

13
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Furthermore, the lift-curve slope, Cr,, and center of pressure appeared

to be more a function of nose drag coefficient than of nose shape per se;
increasing nose drag coefficient decreased Cr, and moved the center of
pressure rearward.

The dynamic behavior appeared to change from stable at the lower Mach
nunbers to unstable at the higher Mach numbers.

In general, modified Newtonian theory underpredicted the drag by 5 to
30 percent and predicted little or no 1lift contribution from the cylindrical
afterbody at small angles of attack. A simple hybrid theory which allowed for
1lift from the afterbody was, in general, an improvement over the modified
Newtonian theory but it left much to be desired; in particular, it overpre-
dicted the 1ift on the afterbody of the ellipsoidal-nosed configurations.
Better estimates of the pressure distribution at zero angle of attack would
probably improve the predictions made with the simple hybrid theory.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Mar. 1, 1965
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TEST CONDITIONS AND TEST RESULTS

16

X 2 X No. of cycles
Configuration | Run M. walO i Srms CDeff CL Cma % 3 Tn % % and
@ type of motion
(a) Cone-cylinders
C-0.5 775 5.16 1.48 5.46 | 0.586 1.76 -0.267 | 0.094 -0.5 0.9020 0.0200 | 1.06 1" - NP2
C-0.5 820 5.54 1.60 8.10 . 600 1.26 -.223 094 2.1 .9020 -.0256 | 1.06 1-7pP
c-0.5 828 9.59 1.64% 4.15 SLé 1.27 -.1h49 052 3.7 .9020 -.0306 | 1.06 1~ - NP
C-0.5 851 | 1k.61 2.52 6.13 J— 1.260 -.129 .04s5 16.9 .9020 -.0280 | 1.06 1/t - P
C-0.5 776 [ k.74 2.55 3.90 .558 - -.199 - 347 . 9020 -.0340 ] 1.06 3/b™ - P
C-0.9 821 5.27 1.56 2.56 | 1.09 1.22 - b1 483 -.3h . 5000 L1456 | 1.16 1-1/2 - P
c-0.9 825 | 10.07 1.69 15.1% | L.07 . 789 -.296 .30k .67 .Lgog L1450 | 1.16 1-P
Cc-0.9 855 | 14.80 2.48 3.95 | 1.08 .782 -.327 .32 4.07 . 5000 L1460 | 1.16 1 - NP
C-1.3 822 5.08 1.46 5.27 | 1.5% 477 -.293 .503 2.7 .312h 2279 | 1.16 1-1/2% - P
C-1.3 824 9.76 1.72 4.08 | 1.5 -.561 -.299 sLh -8.0 .3123 2257 | 1.16 1t - P
c-1.3 832 | 15.19 2.56 2.05 | 1.50 ——- -.299 ——- 1.8 .3123 2288 | 1.16 1+t . P
c-1.8 8oL L.ok 1.18 1.9% | 1.67 - - h22 - -11.0 o] -.3352 | 1.36 ---
c-1.8 819 L.64 1.36 1.6 1.68 - - - - 0 —-- 1.36
c-1.8 805 5.1k 1.49 5.73 | 1.73 - 743 -.35k4 697 -2.5 0 -.3394% | 1.36 AR
c-1.8 91k 8.32 1.37 3.83 | 1.70 - 742 -.332 681 -58.7 o] -.3430 | 1.46 -
c-1.8 916 9.14 1.48 3.31 | 1.76 -.70L -.302 .636 k.0 o] -.3506 | 1.46 1 - NP
c-1.8 841 9.66 1.67 7.20 | 1.69 -.715 -.295 .643 3.6 o] -.3389 | 1.36 1-P
c-1.8 808 9.8k 1.69 9.20 | 1.72 — -.278 —— -3.0 o] -.3357 | 1.36 1 - NP
c-1.8 842 | 1k.16 244 5.60 | 1.64 -1.01 -.194 65k 39.0 ¢] -.3388 | 1.36 1- - NP
(b) Sphere-cone-cylinders
5C-0.5 912 | 3.91 | 1.10 8.60 L664 | 1.35 -.333 .100 -1.9 L6851 _.0645 | 1.06 1v - pb
SC-0.5 906 4.85 1.36 8.92 .583 .933 -.24) .104 -.5 L6851 -.0649 | 1.06 L.
8C-0.5 850 5.15 1.48 10.0 .635 . i --- —— L6855 L1016 | 1.16 -
SC-0.5 901 | 10.30 1.70 L.40 b7 1.07 -.173 .051 -10.3 L6853 -.0597 | 1.06 1" - NP2
5¢-0.5 8k | 10.24 2.03 15.0 653 1.02 -.080 .150 -50.1 .6855 .1016 | 1.16 1/2- - P
5¢-0.5 903 | 1k.34 2.39 9.97 .553 L.b7h -.163 .020 -36.6 .685 -.0610 | 1.06 1/2t - NP
5C-0.9 8kg h.92 1.h0 L.84 | 1.04 .Th3 -.383 .350 -1.3 -Loée L1356 | 1.16 1* - NP
5€-0.9 826 | 10.28 1.82 L7 .988 LTl -.295 .306 .8 .Lo69 11359 | 1.16 1L-P
$C-0.9 852 | 15.09 2.55 6.90 .986 .635 -.283 .309 1.7 .Lo68 L1343 | L.16 1--P
SC-1.3 913 4.13 1.15 2.5 1.48 -.2ke ~.30k Rian 6.1 L2670 2302 | 1.16 1t - we
sC-1.3 8u8 5.1k 1.49 8.63 | 1.37 -.358 -.290 .518 -1.1 L2668 L2299 | 1.16 1t -P
5C-1.3 827 | 10.52 1.79 6.30 | 1.46 -.368 -.318 .566 -1 . 2669 2283 | 1.16 1-1/2 - NP
8C-1.3 920 | Lbk.k1 2.40 4.0 1.49 -.011 --379 L8y -.3 L2671 .2298 | 1.16 1t - NP
SC-1.3 843 | 15.04 2.58 9.83 | 1.39 -.277 -.290 hol 2.2 2668 .2293 | 1.16 1-P
(c¢) Ellipsoid-cylinders
E-0.5 905 L5k 1.28 15.40 L7e1 1.00 -.302 | -.20h4 -2.1 1.0416 -.3791 .852 1 - Pba
E-0.5 902 9.75 1.63 1h.47 . 590 .923 -.188 | -.262 -72.3 1.0L42 -«3770 .852 3/4 - NP
E-0.5 845 | 10.63 1.88 23.09 .725 - -.123 - -k.2 1.042 -.2610 .852 1/zv - wp
E-0.5 907 | 12.96 | 2.06 17.22 .690 --- -.19k . bk 1.042 -.3310 852 1/2% - NP
E-0.9 807 4.68 | 1.63 8.65 .9hk R -.2k9 ——- 5.0 + 500 -.0220 | 1.06 3/4% - NP
E-0.9 823 5.03 1.4k L.48 £935 .500 -.311 206 -1.7 5001 -.0108 | 1.06 R
E-0.9 802 5.51 1.63 13.1 Joby 452 -.320 .209 1.0 - 500 -.0247 | 1.06 1t - NP
E-0.9 839 9.56 1.62 5.51 .89k .146 -.2h6 .226 1.1 . 5006 -.0103 | 1.06 1~ -P
E-0.9 856 [ 1h.41 2.40 3.57 .852 .519 .237 1.53 11.8 . 5002 -.0071 | 1.06 1 - NP
E-0.9 806 | 14.80 2.55 9.08 . 854 - -.230 aa- -3.0 500 -.01698 | 1.06 1- - NP
E-1.3 847 k.73 1.38 3.32 | l.2b - -.3k6 . 9.2 2502 L1650 | 1.16 PR
E-1.3 831 9.56 1.66 2.49 | 1.25 -.459 -.312 . 560 1.3 .2500 L1646 | 1.16 PR
E-1.3 853 | k.81 2.46 7.83 | 1.29 -.246 -.204 RN .8 L2501 L1655 | 1.16 1-7P
a'Plana.r motion

Nonplanar motion




ln=|.04
loy® 85

SC-05

r/d=0.30
0=24°
loy=1.06

CD=O.9 CD=|.3
E-09 E-1.3
ln=o.5 Zn=025
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Figure 1.- Configurations tested.
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Figure 2.- Test models.




sgqep uoryTisod pue ‘UOT}BARUSTIO ¢fa1o0ToA TBOTAAL -*€ 2andTd
«£3095TY K3TO0T2A (®)

43¢ x “jduuny BuolD @dUDYSIQ
e 0<¢ 9l 2l 8

I ] ! |

090:=99Ai0400l04) ——
piog O

00I19

0029

00¢9

00v9

29S/ 4} A*AN00I9A WDB}S-93.44

19



20

Swerve in z direction, in.

-3.4

-3.2F
-30
o7
-2.8 |-
)8
9
-2.6 |-
O Data
—— Trojectory, CLx =1.26
-24 |-

'\l 1 | |

0o 5.4 56 5.8
Swerve in y direction, in.

(b) Position data.

Figure 3.- Continued.
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Figure 3.- Concluded.
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Free-stream Mach number,M

(a) Cone-cylinder configurations.
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Figure L.- Drag coefficient vs. Mach number.
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Figure k4.- Continued.
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(b) Sphere-cone-cylinder configurations.
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Figure 4.- Concluded.
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Figure 5.- Lift curve slope vs. Mach number.
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(b) Sphere-cone-cylinder configurations.

Figure 5.- Continued.
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Figure 5.- Concluded.
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Figure 6.- Lift-drag cross plot.
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Figure 7.- Center of pressure.
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Figure 7.- Continued.
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Dynamic-stability parameter , §
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Figure 8.- Dynamic stability.
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